Metamath Proof Explorer


Theorem eleq12i

Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994)

Ref Expression
Hypotheses eleq1i.1 A = B
eleq12i.2 C = D
Assertion eleq12i A C B D

Proof

Step Hyp Ref Expression
1 eleq1i.1 A = B
2 eleq12i.2 C = D
3 2 eleq2i A C A D
4 1 eleq1i A D B D
5 3 4 bitri A C B D