Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
eleq1a
Next ⟩
eqeltri
Metamath Proof Explorer
Ascii
Unicode
Theorem
eleq1a
Description:
A transitive-type law relating membership and equality.
(Contributed by
NM
, 9-Apr-1994)
Ref
Expression
Assertion
eleq1a
⊢
A
∈
B
→
C
=
A
→
C
∈
B
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
C
=
A
→
C
∈
B
↔
A
∈
B
2
1
biimprcd
⊢
A
∈
B
→
C
=
A
→
C
∈
B