Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
eleq2i
Next ⟩
eleq12i
Metamath Proof Explorer
Ascii
Unicode
Theorem
eleq2i
Description:
Inference from equality to equivalence of membership.
(Contributed by
NM
, 26-May-1993)
Ref
Expression
Hypothesis
eleq1i.1
⊢
A
=
B
Assertion
eleq2i
⊢
C
∈
A
↔
C
∈
B
Proof
Step
Hyp
Ref
Expression
1
eleq1i.1
⊢
A
=
B
2
eleq2
⊢
A
=
B
→
C
∈
A
↔
C
∈
B
3
1
2
ax-mp
⊢
C
∈
A
↔
C
∈
B