Metamath Proof Explorer
Description: Substitution of equal classes into a membership antecedent.
(Contributed by Jonathan Ben-Naim, 3-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
eleq2s.1 |
|
|
|
eleq2s.2 |
|
|
Assertion |
eleq2s |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2s.1 |
|
2 |
|
eleq2s.2 |
|
3 |
2
|
eleq2i |
|
4 |
3 1
|
sylbi |
|