Metamath Proof Explorer


Theorem eleq2s

Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses eleq2s.1 A B φ
eleq2s.2 C = B
Assertion eleq2s A C φ

Proof

Step Hyp Ref Expression
1 eleq2s.1 A B φ
2 eleq2s.2 C = B
3 2 eleq2i A C A B
4 3 1 sylbi A C φ