Metamath Proof Explorer


Theorem eleq2w

Description: Weaker version of eleq2 (but more general than elequ2 ) not depending on ax-ext nor df-cleq . (Contributed by BJ, 29-Sep-2019)

Ref Expression
Assertion eleq2w x = y A x A y

Proof

Step Hyp Ref Expression
1 elequ2 x = y z x z y
2 1 anbi2d x = y z = A z x z = A z y
3 2 exbidv x = y z z = A z x z z = A z y
4 dfclel A x z z = A z x
5 dfclel A y z z = A z y
6 3 4 5 3bitr4g x = y A x A y