Metamath Proof Explorer
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
|
|
Ref |
Expression |
|
Hypotheses |
eleqtrid.1 |
|
|
|
eleqtrid.2 |
|
|
Assertion |
eleqtrid |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleqtrid.1 |
|
| 2 |
|
eleqtrid.2 |
|
| 3 |
1
|
a1i |
|
| 4 |
3 2
|
eleqtrd |
|