Metamath Proof Explorer


Theorem eleqtrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eleqtrid.1 A B
eleqtrid.2 φ B = C
Assertion eleqtrid φ A C

Proof

Step Hyp Ref Expression
1 eleqtrid.1 A B
2 eleqtrid.2 φ B = C
3 1 a1i φ A B
4 3 2 eleqtrd φ A C