Metamath Proof Explorer


Theorem eleqtrrdi

Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005)

Ref Expression
Hypotheses eleqtrrdi.1 φ A B
eleqtrrdi.2 C = B
Assertion eleqtrrdi φ A C

Proof

Step Hyp Ref Expression
1 eleqtrrdi.1 φ A B
2 eleqtrrdi.2 C = B
3 2 eqcomi B = C
4 1 3 eleqtrdi φ A C