Metamath Proof Explorer


Theorem elex22

Description: If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011)

Ref Expression
Assertion elex22 A B A C x x B x C

Proof

Step Hyp Ref Expression
1 eleq1a A B x = A x B
2 eleq1a A C x = A x C
3 1 2 anim12ii A B A C x = A x B x C
4 3 alrimiv A B A C x x = A x B x C
5 elisset A B x x = A
6 5 adantr A B A C x x = A
7 exim x x = A x B x C x x = A x x B x C
8 4 6 7 sylc A B A C x x B x C