Metamath Proof Explorer


Theorem elfg

Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion elfg F fBas X A X filGen F A X x F x A

Proof

Step Hyp Ref Expression
1 fgval F fBas X X filGen F = y 𝒫 X | F 𝒫 y
2 1 eleq2d F fBas X A X filGen F A y 𝒫 X | F 𝒫 y
3 pweq y = A 𝒫 y = 𝒫 A
4 3 ineq2d y = A F 𝒫 y = F 𝒫 A
5 4 neeq1d y = A F 𝒫 y F 𝒫 A
6 5 elrab A y 𝒫 X | F 𝒫 y A 𝒫 X F 𝒫 A
7 elfvdm F fBas X X dom fBas
8 elpw2g X dom fBas A 𝒫 X A X
9 7 8 syl F fBas X A 𝒫 X A X
10 elin x F 𝒫 A x F x 𝒫 A
11 velpw x 𝒫 A x A
12 11 anbi2i x F x 𝒫 A x F x A
13 10 12 bitri x F 𝒫 A x F x A
14 13 exbii x x F 𝒫 A x x F x A
15 n0 F 𝒫 A x x F 𝒫 A
16 df-rex x F x A x x F x A
17 14 15 16 3bitr4i F 𝒫 A x F x A
18 17 a1i F fBas X F 𝒫 A x F x A
19 9 18 anbi12d F fBas X A 𝒫 X F 𝒫 A A X x F x A
20 6 19 syl5bb F fBas X A y 𝒫 X | F 𝒫 y A X x F x A
21 2 20 bitrd F fBas X A X filGen F A X x F x A