Metamath Proof Explorer


Theorem elfi

Description: Specific properties of an element of ( fiB ) . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion elfi A V B W A fi B x 𝒫 B Fin A = x

Proof

Step Hyp Ref Expression
1 fival B W fi B = y | x 𝒫 B Fin y = x
2 1 eleq2d B W A fi B A y | x 𝒫 B Fin y = x
3 eqeq1 y = A y = x A = x
4 3 rexbidv y = A x 𝒫 B Fin y = x x 𝒫 B Fin A = x
5 4 elabg A V A y | x 𝒫 B Fin y = x x 𝒫 B Fin A = x
6 2 5 sylan9bbr A V B W A fi B x 𝒫 B Fin A = x