Metamath Proof Explorer


Theorem elfilspd

Description: Simplified version of ellspd when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses ellspd.n N = LSpan M
ellspd.v B = Base M
ellspd.k K = Base S
ellspd.s S = Scalar M
ellspd.z 0 ˙ = 0 S
ellspd.t · ˙ = M
elfilspd.f φ F : I B
elfilspd.m φ M LMod
elfilspd.i φ I Fin
Assertion elfilspd φ X N F I f K I X = M f · ˙ f F

Proof

Step Hyp Ref Expression
1 ellspd.n N = LSpan M
2 ellspd.v B = Base M
3 ellspd.k K = Base S
4 ellspd.s S = Scalar M
5 ellspd.z 0 ˙ = 0 S
6 ellspd.t · ˙ = M
7 elfilspd.f φ F : I B
8 elfilspd.m φ M LMod
9 elfilspd.i φ I Fin
10 1 2 3 4 5 6 7 8 9 ellspd φ X N F I f K I finSupp 0 ˙ f X = M f · ˙ f F
11 elmapi f K I f : I K
12 11 adantl φ f K I f : I K
13 9 adantr φ f K I I Fin
14 5 fvexi 0 ˙ V
15 14 a1i φ f K I 0 ˙ V
16 12 13 15 fdmfifsupp φ f K I finSupp 0 ˙ f
17 16 biantrurd φ f K I X = M f · ˙ f F finSupp 0 ˙ f X = M f · ˙ f F
18 17 rexbidva φ f K I X = M f · ˙ f F f K I finSupp 0 ˙ f X = M f · ˙ f F
19 10 18 bitr4d φ X N F I f K I X = M f · ˙ f F