Metamath Proof Explorer


Theorem elfilss

Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion elfilss F Fil X A X A F t F t A

Proof

Step Hyp Ref Expression
1 ibar A X t F t A A X t F t A
2 1 adantl F Fil X A X t F t A A X t F t A
3 filfbas F Fil X F fBas X
4 elfg F fBas X A X filGen F A X t F t A
5 3 4 syl F Fil X A X filGen F A X t F t A
6 5 adantr F Fil X A X A X filGen F A X t F t A
7 fgfil F Fil X X filGen F = F
8 7 eleq2d F Fil X A X filGen F A F
9 8 adantr F Fil X A X A X filGen F A F
10 2 6 9 3bitr2rd F Fil X A X A F t F t A