Metamath Proof Explorer


Theorem elfir

Description: Sufficient condition for an element of ( fiB ) . (Contributed by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion elfir B V A B A A Fin A fi B

Proof

Step Hyp Ref Expression
1 simp1 A B A A Fin A B
2 elpw2g B V A 𝒫 B A B
3 1 2 syl5ibr B V A B A A Fin A 𝒫 B
4 3 imp B V A B A A Fin A 𝒫 B
5 simpr3 B V A B A A Fin A Fin
6 4 5 elind B V A B A A Fin A 𝒫 B Fin
7 eqid A = A
8 inteq x = A x = A
9 8 rspceeqv A 𝒫 B Fin A = A x 𝒫 B Fin A = x
10 6 7 9 sylancl B V A B A A Fin x 𝒫 B Fin A = x
11 simp2 A B A A Fin A
12 intex A A V
13 11 12 sylib A B A A Fin A V
14 id B V B V
15 elfi A V B V A fi B x 𝒫 B Fin A = x
16 13 14 15 syl2anr B V A B A A Fin A fi B x 𝒫 B Fin A = x
17 10 16 mpbird B V A B A A Fin A fi B