| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|
| 2 |
1
|
adantl |
|
| 3 |
|
simpll |
|
| 4 |
|
simplr |
|
| 5 |
2 3 4
|
3jca |
|
| 6 |
|
elex |
|
| 7 |
6
|
3anim1i |
|
| 8 |
7
|
3expib |
|
| 9 |
|
elex |
|
| 10 |
9
|
3anim1i |
|
| 11 |
10
|
3expib |
|
| 12 |
|
vex |
|
| 13 |
12
|
inex1 |
|
| 14 |
|
eleq1 |
|
| 15 |
13 14
|
mpbiri |
|
| 16 |
15
|
a1i |
|
| 17 |
16
|
rexlimivv |
|
| 18 |
17
|
3anim1i |
|
| 19 |
18
|
3expib |
|
| 20 |
8 11 19
|
3jaoi |
|
| 21 |
20
|
impcom |
|
| 22 |
|
simp1 |
|
| 23 |
|
unexg |
|
| 24 |
23
|
3adant1 |
|
| 25 |
|
elfi |
|
| 26 |
22 24 25
|
syl2anc |
|
| 27 |
|
simpl1 |
|
| 28 |
|
eleq1 |
|
| 29 |
|
intex |
|
| 30 |
28 29
|
bitr4di |
|
| 31 |
27 30
|
syl5ibcom |
|
| 32 |
|
simp22 |
|
| 33 |
|
inss2 |
|
| 34 |
33
|
a1i |
|
| 35 |
|
simp1l |
|
| 36 |
|
simp3l |
|
| 37 |
36
|
elin2d |
|
| 38 |
|
inss1 |
|
| 39 |
|
ssfi |
|
| 40 |
37 38 39
|
sylancl |
|
| 41 |
|
elfir |
|
| 42 |
32 34 35 40 41
|
syl13anc |
|
| 43 |
|
simp23 |
|
| 44 |
|
inss2 |
|
| 45 |
44
|
a1i |
|
| 46 |
|
simp1r |
|
| 47 |
|
inss1 |
|
| 48 |
|
ssfi |
|
| 49 |
37 47 48
|
sylancl |
|
| 50 |
|
elfir |
|
| 51 |
43 45 46 49 50
|
syl13anc |
|
| 52 |
|
elinel1 |
|
| 53 |
52
|
elpwid |
|
| 54 |
|
dfss2 |
|
| 55 |
54
|
biimpi |
|
| 56 |
|
indi |
|
| 57 |
55 56
|
eqtr3di |
|
| 58 |
57
|
inteqd |
|
| 59 |
|
intun |
|
| 60 |
58 59
|
eqtrdi |
|
| 61 |
36 53 60
|
3syl |
|
| 62 |
|
ineq1 |
|
| 63 |
62
|
eqeq2d |
|
| 64 |
|
ineq2 |
|
| 65 |
64
|
eqeq2d |
|
| 66 |
63 65
|
rspc2ev |
|
| 67 |
42 51 61 66
|
syl3anc |
|
| 68 |
67
|
3mix3d |
|
| 69 |
68
|
3expib |
|
| 70 |
|
simp23 |
|
| 71 |
|
simp1 |
|
| 72 |
|
simp3l |
|
| 73 |
|
reldisj |
|
| 74 |
72 53 73
|
3syl |
|
| 75 |
71 74
|
mpbid |
|
| 76 |
|
uncom |
|
| 77 |
76
|
difeq1i |
|
| 78 |
|
difun2 |
|
| 79 |
77 78
|
eqtri |
|
| 80 |
|
difss |
|
| 81 |
79 80
|
eqsstri |
|
| 82 |
75 81
|
sstrdi |
|
| 83 |
|
simp3r |
|
| 84 |
72
|
elin2d |
|
| 85 |
|
elfir |
|
| 86 |
70 82 83 84 85
|
syl13anc |
|
| 87 |
86
|
3mix2d |
|
| 88 |
87
|
3expib |
|
| 89 |
|
simp22 |
|
| 90 |
|
simp1 |
|
| 91 |
|
simp3l |
|
| 92 |
|
reldisj |
|
| 93 |
91 53 92
|
3syl |
|
| 94 |
90 93
|
mpbid |
|
| 95 |
|
difun2 |
|
| 96 |
|
difss |
|
| 97 |
95 96
|
eqsstri |
|
| 98 |
94 97
|
sstrdi |
|
| 99 |
|
simp3r |
|
| 100 |
91
|
elin2d |
|
| 101 |
|
elfir |
|
| 102 |
89 98 99 100 101
|
syl13anc |
|
| 103 |
102
|
3mix1d |
|
| 104 |
103
|
3expib |
|
| 105 |
69 88 104
|
pm2.61iine |
|
| 106 |
|
eleq1 |
|
| 107 |
|
eleq1 |
|
| 108 |
|
eqeq1 |
|
| 109 |
108
|
2rexbidv |
|
| 110 |
106 107 109
|
3orbi123d |
|
| 111 |
105 110
|
syl5ibrcom |
|
| 112 |
111
|
expr |
|
| 113 |
112
|
com23 |
|
| 114 |
31 113
|
mpdd |
|
| 115 |
114
|
rexlimdva |
|
| 116 |
26 115
|
sylbid |
|
| 117 |
|
ssun1 |
|
| 118 |
|
fiss |
|
| 119 |
23 117 118
|
sylancl |
|
| 120 |
119
|
3adant1 |
|
| 121 |
120
|
sseld |
|
| 122 |
|
ssun2 |
|
| 123 |
|
fiss |
|
| 124 |
23 122 123
|
sylancl |
|
| 125 |
124
|
3adant1 |
|
| 126 |
125
|
sseld |
|
| 127 |
120
|
sseld |
|
| 128 |
125
|
sseld |
|
| 129 |
127 128
|
anim12d |
|
| 130 |
|
fiin |
|
| 131 |
|
eleq1a |
|
| 132 |
130 131
|
syl |
|
| 133 |
129 132
|
syl6 |
|
| 134 |
133
|
rexlimdvv |
|
| 135 |
121 126 134
|
3jaod |
|
| 136 |
116 135
|
impbid |
|
| 137 |
5 21 136
|
pm5.21nd |
|