Metamath Proof Explorer


Theorem elflim

Description: The predicate "is a limit point of a filter." (Contributed by Jeff Hankins, 4-Sep-2009) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion elflim J TopOn X F Fil X A J fLim F A X nei J A F

Proof

Step Hyp Ref Expression
1 topontop J TopOn X J Top
2 1 adantr J TopOn X F Fil X J Top
3 fvssunirn Fil X ran Fil
4 3 sseli F Fil X F ran Fil
5 4 adantl J TopOn X F Fil X F ran Fil
6 filsspw F Fil X F 𝒫 X
7 6 adantl J TopOn X F Fil X F 𝒫 X
8 toponuni J TopOn X X = J
9 8 adantr J TopOn X F Fil X X = J
10 9 pweqd J TopOn X F Fil X 𝒫 X = 𝒫 J
11 7 10 sseqtrd J TopOn X F Fil X F 𝒫 J
12 eqid J = J
13 12 elflim2 A J fLim F J Top F ran Fil F 𝒫 J A J nei J A F
14 13 baib J Top F ran Fil F 𝒫 J A J fLim F A J nei J A F
15 2 5 11 14 syl3anc J TopOn X F Fil X A J fLim F A J nei J A F
16 9 eleq2d J TopOn X F Fil X A X A J
17 16 anbi1d J TopOn X F Fil X A X nei J A F A J nei J A F
18 15 17 bitr4d J TopOn X F Fil X A J fLim F A X nei J A F