Metamath Proof Explorer


Theorem elflim2

Description: The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flimval.1 X = J
Assertion elflim2 A J fLim F J Top F ran Fil F 𝒫 X A X nei J A F

Proof

Step Hyp Ref Expression
1 flimval.1 X = J
2 anass J Top F ran Fil F 𝒫 X A X nei J A F J Top F ran Fil F 𝒫 X A X nei J A F
3 df-3an J Top F ran Fil F 𝒫 X J Top F ran Fil F 𝒫 X
4 3 anbi1i J Top F ran Fil F 𝒫 X A X nei J A F J Top F ran Fil F 𝒫 X A X nei J A F
5 df-flim fLim = j Top , f ran Fil x j | nei j x f f 𝒫 j
6 5 elmpocl A J fLim F J Top F ran Fil
7 1 flimval J Top F ran Fil J fLim F = x X | nei J x F F 𝒫 X
8 7 eleq2d J Top F ran Fil A J fLim F A x X | nei J x F F 𝒫 X
9 sneq x = A x = A
10 9 fveq2d x = A nei J x = nei J A
11 10 sseq1d x = A nei J x F nei J A F
12 11 anbi1d x = A nei J x F F 𝒫 X nei J A F F 𝒫 X
13 12 biancomd x = A nei J x F F 𝒫 X F 𝒫 X nei J A F
14 13 elrab A x X | nei J x F F 𝒫 X A X F 𝒫 X nei J A F
15 an12 A X F 𝒫 X nei J A F F 𝒫 X A X nei J A F
16 14 15 bitri A x X | nei J x F F 𝒫 X F 𝒫 X A X nei J A F
17 8 16 bitrdi J Top F ran Fil A J fLim F F 𝒫 X A X nei J A F
18 6 17 biadanii A J fLim F J Top F ran Fil F 𝒫 X A X nei J A F
19 2 4 18 3bitr4ri A J fLim F J Top F ran Fil F 𝒫 X A X nei J A F