Step |
Hyp |
Ref |
Expression |
1 |
|
elfm2.l |
|
2 |
|
foima |
|
3 |
2
|
adantl |
|
4 |
|
fofun |
|
5 |
|
elfvdm |
|
6 |
|
funimaexg |
|
7 |
4 5 6
|
syl2anr |
|
8 |
3 7
|
eqeltrrd |
|
9 |
|
fof |
|
10 |
1
|
elfm2 |
|
11 |
9 10
|
syl3an3 |
|
12 |
|
fgcl |
|
13 |
1 12
|
eqeltrid |
|
14 |
13
|
3ad2ant2 |
|
15 |
14
|
ad2antrr |
|
16 |
|
simprl |
|
17 |
|
cnvimass |
|
18 |
|
fofn |
|
19 |
18
|
fndmd |
|
20 |
17 19
|
sseqtrid |
|
21 |
20
|
3ad2ant3 |
|
22 |
21
|
ad2antrr |
|
23 |
4
|
3ad2ant3 |
|
24 |
23
|
ad2antrr |
|
25 |
1
|
eleq2i |
|
26 |
|
elfg |
|
27 |
26
|
3ad2ant2 |
|
28 |
27
|
adantr |
|
29 |
25 28
|
syl5bb |
|
30 |
29
|
simprbda |
|
31 |
|
sseq2 |
|
32 |
31
|
biimpar |
|
33 |
19 32
|
sylan |
|
34 |
33
|
3ad2antl3 |
|
35 |
34
|
adantlr |
|
36 |
30 35
|
syldan |
|
37 |
|
funimass3 |
|
38 |
24 36 37
|
syl2anc |
|
39 |
38
|
biimpd |
|
40 |
39
|
impr |
|
41 |
|
filss |
|
42 |
15 16 22 40 41
|
syl13anc |
|
43 |
|
foimacnv |
|
44 |
43
|
eqcomd |
|
45 |
44
|
3ad2antl3 |
|
46 |
45
|
adantr |
|
47 |
|
imaeq2 |
|
48 |
47
|
rspceeqv |
|
49 |
42 46 48
|
syl2anc |
|
50 |
49
|
rexlimdvaa |
|
51 |
50
|
expimpd |
|
52 |
|
simprr |
|
53 |
|
imassrn |
|
54 |
|
forn |
|
55 |
54
|
3ad2ant3 |
|
56 |
55
|
adantr |
|
57 |
53 56
|
sseqtrid |
|
58 |
52 57
|
eqsstrd |
|
59 |
|
eqimss2 |
|
60 |
|
imaeq2 |
|
61 |
60
|
sseq1d |
|
62 |
61
|
rspcev |
|
63 |
59 62
|
sylan2 |
|
64 |
63
|
adantl |
|
65 |
58 64
|
jca |
|
66 |
65
|
rexlimdvaa |
|
67 |
51 66
|
impbid |
|
68 |
11 67
|
bitrd |
|
69 |
68
|
3coml |
|
70 |
8 69
|
mpd3an3 |
|