Metamath Proof Explorer


Theorem elfrlmbasn0

Description: If the dimension of a free module over a ring is not 0, every element of its base set is not empty. (Contributed by AV, 10-Feb-2019)

Ref Expression
Hypotheses frlmfibas.f F = R freeLMod I
frlmfibas.n N = Base R
elfrlmbasn0.b B = Base F
Assertion elfrlmbasn0 I V I X B X

Proof

Step Hyp Ref Expression
1 frlmfibas.f F = R freeLMod I
2 frlmfibas.n N = Base R
3 elfrlmbasn0.b B = Base F
4 1 2 3 frlmbasf I V X B X : I N
5 4 ex I V X B X : I N
6 f0dom0 X : I N I = X =
7 6 biimprd X : I N X = I =
8 7 necon3d X : I N I X
9 8 com12 I X : I N X
10 5 9 sylan9 I V I X B X