Metamath Proof Explorer


Theorem elfv2ex

Description: If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021)

Ref Expression
Assertion elfv2ex A F B C B V

Proof

Step Hyp Ref Expression
1 ax-1 B V A F B C B V
2 fv2prc ¬ B V F B C =
3 2 eleq2d ¬ B V A F B C A
4 noel ¬ A
5 4 pm2.21i A B V
6 3 5 syl6bi ¬ B V A F B C B V
7 1 6 pm2.61i A F B C B V