Metamath Proof Explorer


Theorem elfvmptrab

Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018)

Ref Expression
Hypotheses elfvmptrab.f F = x V y M | φ
elfvmptrab.v X V M V
Assertion elfvmptrab Y F X X V Y M

Proof

Step Hyp Ref Expression
1 elfvmptrab.f F = x V y M | φ
2 elfvmptrab.v X V M V
3 csbconstg x V x / m M = M
4 3 eqcomd x V M = x / m M
5 rabeq M = x / m M y M | φ = y x / m M | φ
6 4 5 syl x V y M | φ = y x / m M | φ
7 6 mpteq2ia x V y M | φ = x V y x / m M | φ
8 1 7 eqtri F = x V y x / m M | φ
9 csbconstg X V X / m M = M
10 9 2 eqeltrd X V X / m M V
11 8 10 elfvmptrab1w Y F X X V Y X / m M
12 9 eleq2d X V Y X / m M Y M
13 12 biimpd X V Y X / m M Y M
14 13 imdistani X V Y X / m M X V Y M
15 11 14 syl Y F X X V Y M