Metamath Proof Explorer


Theorem elfvmptrab1

Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker elfvmptrab1w when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018) (New usage is discouraged.)

Ref Expression
Hypotheses elfvmptrab1.f F = x V y x / m M | φ
elfvmptrab1.v X V X / m M V
Assertion elfvmptrab1 Y F X X V Y X / m M

Proof

Step Hyp Ref Expression
1 elfvmptrab1.f F = x V y x / m M | φ
2 elfvmptrab1.v X V X / m M V
3 ne0i Y F X F X
4 ndmfv ¬ X dom F F X =
5 4 necon1ai F X X dom F
6 1 dmmptss dom F V
7 6 sseli X dom F X V
8 rabexg X / m M V y X / m M | [˙X / x]˙ φ V
9 7 2 8 3syl X dom F y X / m M | [˙X / x]˙ φ V
10 nfcv _ x X
11 nfsbc1v x [˙X / x]˙ φ
12 nfcv _ x M
13 10 12 nfcsb _ x X / m M
14 11 13 nfrab _ x y X / m M | [˙X / x]˙ φ
15 csbeq1 x = X x / m M = X / m M
16 sbceq1a x = X φ [˙X / x]˙ φ
17 15 16 rabeqbidv x = X y x / m M | φ = y X / m M | [˙X / x]˙ φ
18 10 14 17 1 fvmptf X V y X / m M | [˙X / x]˙ φ V F X = y X / m M | [˙X / x]˙ φ
19 7 9 18 syl2anc X dom F F X = y X / m M | [˙X / x]˙ φ
20 19 eleq2d X dom F Y F X Y y X / m M | [˙X / x]˙ φ
21 elrabi Y y X / m M | [˙X / x]˙ φ Y X / m M
22 7 21 anim12i X dom F Y y X / m M | [˙X / x]˙ φ X V Y X / m M
23 22 ex X dom F Y y X / m M | [˙X / x]˙ φ X V Y X / m M
24 20 23 sylbid X dom F Y F X X V Y X / m M
25 3 5 24 3syl Y F X Y F X X V Y X / m M
26 25 pm2.43i Y F X X V Y X / m M