Database
REAL AND COMPLEX NUMBERS
Order sets
Finite intervals of integers
elfz
Next ⟩
elfz2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elfz
Description:
Membership in a finite set of sequential integers.
(Contributed by
NM
, 29-Sep-2005)
Ref
Expression
Assertion
elfz
⊢
K
∈
ℤ
∧
M
∈
ℤ
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
M
≤
K
∧
K
≤
N
Proof
Step
Hyp
Ref
Expression
1
elfz1
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
2
3anass
⊢
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
↔
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
3
2
baib
⊢
K
∈
ℤ
→
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
↔
M
≤
K
∧
K
≤
N
4
1
3
sylan9bb
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
K
∈
ℤ
→
K
∈
M
…
N
↔
M
≤
K
∧
K
≤
N
5
4
3impa
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
K
∈
ℤ
→
K
∈
M
…
N
↔
M
≤
K
∧
K
≤
N
6
5
3comr
⊢
K
∈
ℤ
∧
M
∈
ℤ
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
M
≤
K
∧
K
≤
N