Metamath Proof Explorer


Theorem elfz0add

Description: An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion elfz0add A 0 B 0 N 0 A N 0 A + B

Proof

Step Hyp Ref Expression
1 nn0z A 0 A
2 uzid A A A
3 1 2 syl A 0 A A
4 uzaddcl A A B 0 A + B A
5 3 4 sylan A 0 B 0 A + B A
6 fzss2 A + B A 0 A 0 A + B
7 5 6 syl A 0 B 0 0 A 0 A + B
8 7 sseld A 0 B 0 N 0 A N 0 A + B