Metamath Proof Explorer


Theorem elfz0fzfz0

Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018)

Ref Expression
Assertion elfz0fzfz0 M 0 L N L X M 0 N

Proof

Step Hyp Ref Expression
1 elfz2nn0 M 0 L M 0 L 0 M L
2 elfz2 N L X L X N L N N X
3 nn0re M 0 M
4 nn0re L 0 L
5 zre N N
6 3 4 5 3anim123i M 0 L 0 N M L N
7 6 3expa M 0 L 0 N M L N
8 letr M L N M L L N M N
9 7 8 syl M 0 L 0 N M L L N M N
10 simplll M 0 L 0 N M N M 0
11 simpr M 0 L 0 N N
12 11 adantr M 0 L 0 N M N N
13 elnn0z M 0 M 0 M
14 0red M N 0
15 zre M M
16 15 adantr M N M
17 5 adantl M N N
18 letr 0 M N 0 M M N 0 N
19 14 16 17 18 syl3anc M N 0 M M N 0 N
20 19 exp4b M N 0 M M N 0 N
21 20 com23 M 0 M N M N 0 N
22 21 imp M 0 M N M N 0 N
23 13 22 sylbi M 0 N M N 0 N
24 23 adantr M 0 L 0 N M N 0 N
25 24 imp M 0 L 0 N M N 0 N
26 25 imp M 0 L 0 N M N 0 N
27 elnn0z N 0 N 0 N
28 12 26 27 sylanbrc M 0 L 0 N M N N 0
29 simpr M 0 L 0 N M N M N
30 10 28 29 3jca M 0 L 0 N M N M 0 N 0 M N
31 30 ex M 0 L 0 N M N M 0 N 0 M N
32 9 31 syld M 0 L 0 N M L L N M 0 N 0 M N
33 32 exp4b M 0 L 0 N M L L N M 0 N 0 M N
34 33 com23 M 0 L 0 M L N L N M 0 N 0 M N
35 34 3impia M 0 L 0 M L N L N M 0 N 0 M N
36 35 com13 L N N M 0 L 0 M L M 0 N 0 M N
37 36 adantr L N N X N M 0 L 0 M L M 0 N 0 M N
38 37 com12 N L N N X M 0 L 0 M L M 0 N 0 M N
39 38 3ad2ant3 L X N L N N X M 0 L 0 M L M 0 N 0 M N
40 39 imp L X N L N N X M 0 L 0 M L M 0 N 0 M N
41 2 40 sylbi N L X M 0 L 0 M L M 0 N 0 M N
42 41 com12 M 0 L 0 M L N L X M 0 N 0 M N
43 1 42 sylbi M 0 L N L X M 0 N 0 M N
44 43 imp M 0 L N L X M 0 N 0 M N
45 elfz2nn0 M 0 N M 0 N 0 M N
46 44 45 sylibr M 0 L N L X M 0 N