Metamath Proof Explorer


Theorem elfz0ubfz0

Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018)

Ref Expression
Assertion elfz0ubfz0 K0NLKNK0L

Proof

Step Hyp Ref Expression
1 elfz2nn0 K0NK0N0KN
2 elfz2 LKNKNLKLLN
3 simpr1 KNLKLLNK0N0KNK0
4 elnn0z K0K0K
5 simpr KLL
6 0z 0
7 zletr 0KL0KKL0L
8 6 7 mp3an1 KL0KKL0L
9 elnn0z L0L0L
10 9 simplbi2 L0LL0
11 5 8 10 sylsyld KL0KKLL0
12 11 expd KL0KKLL0
13 12 impancom K0KLKLL0
14 4 13 sylbi K0LKLL0
15 14 com13 KLLK0L0
16 15 adantr KLLNLK0L0
17 16 com12 LKLLNK0L0
18 17 3ad2ant3 KNLKLLNK0L0
19 18 imp KNLKLLNK0L0
20 19 com12 K0KNLKLLNL0
21 20 3ad2ant1 K0N0KNKNLKLLNL0
22 21 impcom KNLKLLNK0N0KNL0
23 simplrl KNLKLLNK0N0KNKL
24 3 22 23 3jca KNLKLLNK0N0KNK0L0KL
25 24 ex KNLKLLNK0N0KNK0L0KL
26 2 25 sylbi LKNK0N0KNK0L0KL
27 26 com12 K0N0KNLKNK0L0KL
28 1 27 sylbi K0NLKNK0L0KL
29 28 imp K0NLKNK0L0KL
30 elfz2nn0 K0LK0L0KL
31 29 30 sylibr K0NLKNK0L