| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfz2nn0 |  | 
						
							| 2 |  | elfz2 |  | 
						
							| 3 |  | simpr1 |  | 
						
							| 4 |  | elnn0z |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 |  | 0z |  | 
						
							| 7 |  | zletr |  | 
						
							| 8 | 6 7 | mp3an1 |  | 
						
							| 9 |  | elnn0z |  | 
						
							| 10 | 9 | simplbi2 |  | 
						
							| 11 | 5 8 10 | sylsyld |  | 
						
							| 12 | 11 | expd |  | 
						
							| 13 | 12 | impancom |  | 
						
							| 14 | 4 13 | sylbi |  | 
						
							| 15 | 14 | com13 |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 | 16 | com12 |  | 
						
							| 18 | 17 | 3ad2ant3 |  | 
						
							| 19 | 18 | imp |  | 
						
							| 20 | 19 | com12 |  | 
						
							| 21 | 20 | 3ad2ant1 |  | 
						
							| 22 | 21 | impcom |  | 
						
							| 23 |  | simplrl |  | 
						
							| 24 | 3 22 23 | 3jca |  | 
						
							| 25 | 24 | ex |  | 
						
							| 26 | 2 25 | sylbi |  | 
						
							| 27 | 26 | com12 |  | 
						
							| 28 | 1 27 | sylbi |  | 
						
							| 29 | 28 | imp |  | 
						
							| 30 |  | elfz2nn0 |  | 
						
							| 31 | 29 30 | sylibr |  |