Metamath Proof Explorer


Theorem elfz1

Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005)

Ref Expression
Assertion elfz1 MNKMNKMKKN

Proof

Step Hyp Ref Expression
1 fzval MNMN=j|MjjN
2 1 eleq2d MNKMNKj|MjjN
3 breq2 j=KMjMK
4 breq1 j=KjNKN
5 3 4 anbi12d j=KMjjNMKKN
6 5 elrab Kj|MjjNKMKKN
7 3anass KMKKNKMKKN
8 6 7 bitr4i Kj|MjjNKMKKN
9 2 8 bitrdi MNKMNKMKKN