Database
REAL AND COMPLEX NUMBERS
Order sets
Finite intervals of integers
elfz1
Next ⟩
elfz
Metamath Proof Explorer
Ascii
Unicode
Theorem
elfz1
Description:
Membership in a finite set of sequential integers.
(Contributed by
NM
, 21-Jul-2005)
Ref
Expression
Assertion
elfz1
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
Proof
Step
Hyp
Ref
Expression
1
fzval
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
…
N
=
j
∈
ℤ
|
M
≤
j
∧
j
≤
N
2
1
eleq2d
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
K
∈
j
∈
ℤ
|
M
≤
j
∧
j
≤
N
3
breq2
⊢
j
=
K
→
M
≤
j
↔
M
≤
K
4
breq1
⊢
j
=
K
→
j
≤
N
↔
K
≤
N
5
3
4
anbi12d
⊢
j
=
K
→
M
≤
j
∧
j
≤
N
↔
M
≤
K
∧
K
≤
N
6
5
elrab
⊢
K
∈
j
∈
ℤ
|
M
≤
j
∧
j
≤
N
↔
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
7
3anass
⊢
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
↔
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
8
6
7
bitr4i
⊢
K
∈
j
∈
ℤ
|
M
≤
j
∧
j
≤
N
↔
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N
9
2
8
bitrdi
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
K
∈
M
…
N
↔
K
∈
ℤ
∧
M
≤
K
∧
K
≤
N