Metamath Proof Explorer


Theorem elfz1b

Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018) (Proof shortened by AV, 23-Jan-2022)

Ref Expression
Assertion elfz1b N 1 M N M N M

Proof

Step Hyp Ref Expression
1 elfz2 N 1 M 1 M N 1 N N M
2 simpl2 1 M N 1 N N M M
3 1red 1 M N 1
4 zre N N
5 4 3ad2ant3 1 M N N
6 zre M M
7 6 3ad2ant2 1 M N M
8 letr 1 N M 1 N N M 1 M
9 3 5 7 8 syl3anc 1 M N 1 N N M 1 M
10 9 imp 1 M N 1 N N M 1 M
11 elnnz1 M M 1 M
12 2 10 11 sylanbrc 1 M N 1 N N M M
13 1 12 sylbi N 1 M M
14 elfzel2 N 1 M M
15 fznn M N 1 M N N M
16 15 biimpd M N 1 M N N M
17 14 16 mpcom N 1 M N N M
18 3anan12 N M N M M N N M
19 13 17 18 sylanbrc N 1 M N M N M
20 nnz M M
21 20 15 syl M N 1 M N N M
22 21 biimprd M N N M N 1 M
23 22 expd M N N M N 1 M
24 23 3imp21 N M N M N 1 M
25 19 24 impbii N 1 M N M N M