Metamath Proof Explorer


Theorem elfz1uz

Description: Membership in a 1-based finite set of sequential integers with an upper integer. (Contributed by AV, 23-Jan-2022)

Ref Expression
Assertion elfz1uz N M N N 1 M

Proof

Step Hyp Ref Expression
1 simpl N M N N
2 eluzle M N N M
3 2 adantl N M N N M
4 eluzelz M N M
5 4 adantl N M N M
6 fznn M N 1 M N N M
7 5 6 syl N M N N 1 M N N M
8 1 3 7 mpbir2and N M N N 1 M