Metamath Proof Explorer


Theorem elfz2nn0

Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfz2nn0 K 0 N K 0 N 0 K N

Proof

Step Hyp Ref Expression
1 elnn0uz K 0 K 0
2 1 anbi1i K 0 N K K 0 N K
3 eluznn0 K 0 N K N 0
4 eluzle N K K N
5 4 adantl K 0 N K K N
6 3 5 jca K 0 N K N 0 K N
7 nn0z K 0 K
8 nn0z N 0 N
9 eluz K N N K K N
10 7 8 9 syl2an K 0 N 0 N K K N
11 10 biimprd K 0 N 0 K N N K
12 11 impr K 0 N 0 K N N K
13 6 12 impbida K 0 N K N 0 K N
14 13 pm5.32i K 0 N K K 0 N 0 K N
15 2 14 bitr3i K 0 N K K 0 N 0 K N
16 elfzuzb K 0 N K 0 N K
17 3anass K 0 N 0 K N K 0 N 0 K N
18 15 16 17 3bitr4i K 0 N K 0 N 0 K N