Metamath Proof Explorer


Theorem elfzd

Description: Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elfzd.1 φ M
elfzd.2 φ N
elfzd.3 φ K
elfzd.4 φ M K
elfzd.5 φ K N
Assertion elfzd φ K M N

Proof

Step Hyp Ref Expression
1 elfzd.1 φ M
2 elfzd.2 φ N
3 elfzd.3 φ K
4 elfzd.4 φ M K
5 elfzd.5 φ K N
6 1 2 3 3jca φ M N K
7 6 4 5 jca32 φ M N K M K K N
8 elfz2 K M N M N K M K K N
9 7 8 sylibr φ K M N