Metamath Proof Explorer


Theorem elfzelfzccat

Description: An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018)

Ref Expression
Assertion elfzelfzccat A Word V B Word V N 0 A N 0 A ++ B

Proof

Step Hyp Ref Expression
1 lencl A Word V A 0
2 lencl B Word V B 0
3 elfz0add A 0 B 0 N 0 A N 0 A + B
4 1 2 3 syl2an A Word V B Word V N 0 A N 0 A + B
5 ccatlen A Word V B Word V A ++ B = A + B
6 5 oveq2d A Word V B Word V 0 A ++ B = 0 A + B
7 6 eleq2d A Word V B Word V N 0 A ++ B N 0 A + B
8 4 7 sylibrd A Word V B Word V N 0 A N 0 A ++ B