Metamath Proof Explorer


Theorem elfzlmr

Description: A member of a finite interval of integers is either its lower bound or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfzlmr K M N K = M K M + 1 ..^ N K = N

Proof

Step Hyp Ref Expression
1 elfzuz2 K M N N M
2 fzpred N M M N = M M + 1 N
3 2 eleq2d N M K M N K M M + 1 N
4 elsni K M K = M
5 elfzr K M + 1 N K M + 1 ..^ N K = N
6 4 5 orim12i K M K M + 1 N K = M K M + 1 ..^ N K = N
7 elun K M M + 1 N K M K M + 1 N
8 3orass K = M K M + 1 ..^ N K = N K = M K M + 1 ..^ N K = N
9 6 7 8 3imtr4i K M M + 1 N K = M K M + 1 ..^ N K = N
10 3 9 syl6bi N M K M N K = M K M + 1 ..^ N K = N
11 1 10 mpcom K M N K = M K M + 1 ..^ N K = N