Metamath Proof Explorer


Theorem elfzm11

Description: Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion elfzm11 M N K M N 1 K M K K < N

Proof

Step Hyp Ref Expression
1 peano2zm N N 1
2 elfz1 M N 1 K M N 1 K M K K N 1
3 1 2 sylan2 M N K M N 1 K M K K N 1
4 zltlem1 K N K < N K N 1
5 4 anbi2d K N M K K < N M K K N 1
6 5 expcom N K M K K < N M K K N 1
7 6 pm5.32d N K M K K < N K M K K N 1
8 3anass K M K K < N K M K K < N
9 3anass K M K K N 1 K M K K N 1
10 7 8 9 3bitr4g N K M K K < N K M K K N 1
11 10 adantl M N K M K K < N K M K K N 1
12 3 11 bitr4d M N K M N 1 K M K K < N