Metamath Proof Explorer


Theorem elfzmlbm

Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion elfzmlbm K M N K M 0 N M

Proof

Step Hyp Ref Expression
1 elfzuz K M N K M
2 uznn0sub K M K M 0
3 1 2 syl K M N K M 0
4 elfzuz2 K M N N M
5 uznn0sub N M N M 0
6 4 5 syl K M N N M 0
7 elfzelz K M N K
8 7 zred K M N K
9 elfzel2 K M N N
10 9 zred K M N N
11 elfzel1 K M N M
12 11 zred K M N M
13 elfzle2 K M N K N
14 8 10 12 13 lesub1dd K M N K M N M
15 elfz2nn0 K M 0 N M K M 0 N M 0 K M N M
16 3 6 14 15 syl3anbrc K M N K M 0 N M