Step |
Hyp |
Ref |
Expression |
1 |
|
elfz2nn0 |
|
2 |
|
nn0z |
|
3 |
|
nn0z |
|
4 |
2 3
|
anim12i |
|
5 |
4
|
3adant3 |
|
6 |
|
elfzom1b |
|
7 |
5 6
|
syl |
|
8 |
7
|
notbid |
|
9 |
|
elfzo0 |
|
10 |
9
|
a1i |
|
11 |
10
|
notbid |
|
12 |
|
3ianor |
|
13 |
|
elnnne0 |
|
14 |
|
df-ne |
|
15 |
14
|
anbi2i |
|
16 |
13 15
|
bitr2i |
|
17 |
|
nnm1nn0 |
|
18 |
16 17
|
sylbi |
|
19 |
18
|
ex |
|
20 |
19
|
con1d |
|
21 |
20
|
imp |
|
22 |
21
|
orcd |
|
23 |
22
|
ex |
|
24 |
23
|
3ad2ant1 |
|
25 |
24
|
com12 |
|
26 |
|
ioran |
|
27 |
|
nn1m1nn |
|
28 |
|
df-ne |
|
29 |
|
necom |
|
30 |
|
nn0re |
|
31 |
30
|
ad2antlr |
|
32 |
|
nn0re |
|
33 |
32
|
adantr |
|
34 |
33
|
adantr |
|
35 |
|
simpr |
|
36 |
31 34 35
|
leltned |
|
37 |
29 36
|
bitr4id |
|
38 |
37
|
adantr |
|
39 |
|
breq1 |
|
40 |
39
|
biimpa |
|
41 |
|
1red |
|
42 |
41 33 41
|
ltsub1d |
|
43 |
|
1m1e0 |
|
44 |
43
|
breq1i |
|
45 |
|
1zzd |
|
46 |
3 45
|
zsubcld |
|
47 |
46
|
adantr |
|
48 |
47
|
adantr |
|
49 |
|
simpr |
|
50 |
|
elnnz |
|
51 |
48 49 50
|
sylanbrc |
|
52 |
51
|
ex |
|
53 |
44 52
|
syl5bi |
|
54 |
42 53
|
sylbid |
|
55 |
40 54
|
syl5 |
|
56 |
55
|
expd |
|
57 |
56
|
adantr |
|
58 |
57
|
imp |
|
59 |
38 58
|
sylbid |
|
60 |
59
|
exp31 |
|
61 |
60
|
com14 |
|
62 |
28 61
|
sylbir |
|
63 |
62
|
com23 |
|
64 |
63
|
com14 |
|
65 |
64
|
ex |
|
66 |
65
|
com14 |
|
67 |
66
|
com13 |
|
68 |
30
|
ad2antlr |
|
69 |
32
|
adantl |
|
70 |
|
1red |
|
71 |
68 69 70
|
lesub1d |
|
72 |
3
|
ad2antlr |
|
73 |
|
1zzd |
|
74 |
72 73
|
zsubcld |
|
75 |
|
nngt0 |
|
76 |
|
0red |
|
77 |
|
peano2rem |
|
78 |
30 77
|
syl |
|
79 |
78
|
adantr |
|
80 |
|
peano2rem |
|
81 |
32 80
|
syl |
|
82 |
81
|
adantl |
|
83 |
|
ltletr |
|
84 |
76 79 82 83
|
syl3anc |
|
85 |
84
|
ex |
|
86 |
85
|
com13 |
|
87 |
86
|
ex |
|
88 |
87
|
com24 |
|
89 |
75 88
|
syl |
|
90 |
89
|
imp41 |
|
91 |
74 90 50
|
sylanbrc |
|
92 |
91
|
a1d |
|
93 |
92
|
ex |
|
94 |
71 93
|
sylbid |
|
95 |
94
|
ex |
|
96 |
95
|
com23 |
|
97 |
96
|
ex |
|
98 |
67 97
|
jaoi |
|
99 |
27 98
|
syl |
|
100 |
13 99
|
sylbir |
|
101 |
100
|
ex |
|
102 |
101
|
pm2.43a |
|
103 |
102
|
com24 |
|
104 |
103
|
3imp |
|
105 |
104
|
com3l |
|
106 |
14 105
|
sylbir |
|
107 |
106
|
imp |
|
108 |
26 107
|
sylbi |
|
109 |
108
|
com12 |
|
110 |
109
|
con1d |
|
111 |
110
|
com12 |
|
112 |
30
|
adantr |
|
113 |
32
|
adantl |
|
114 |
|
1red |
|
115 |
112 113 114
|
3jca |
|
116 |
115
|
3adant3 |
|
117 |
|
ltsub1 |
|
118 |
116 117
|
syl |
|
119 |
118
|
bicomd |
|
120 |
119
|
notbid |
|
121 |
|
eqlelt |
|
122 |
30 32 121
|
syl2an |
|
123 |
122
|
biimpar |
|
124 |
123
|
olcd |
|
125 |
124
|
exp43 |
|
126 |
125
|
3imp |
|
127 |
120 126
|
sylbid |
|
128 |
127
|
com12 |
|
129 |
25 111 128
|
3jaoi |
|
130 |
12 129
|
sylbi |
|
131 |
130
|
com12 |
|
132 |
11 131
|
sylbid |
|
133 |
8 132
|
sylbid |
|
134 |
1 133
|
sylbi |
|
135 |
134
|
imp |
|