Metamath Proof Explorer


Theorem elfzo0

Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzo0 A 0 ..^ B A 0 B A < B

Proof

Step Hyp Ref Expression
1 elfzouz A 0 ..^ B A 0
2 elnn0uz A 0 A 0
3 1 2 sylibr A 0 ..^ B A 0
4 elfzolt3b A 0 ..^ B 0 0 ..^ B
5 lbfzo0 0 0 ..^ B B
6 4 5 sylib A 0 ..^ B B
7 elfzolt2 A 0 ..^ B A < B
8 3 6 7 3jca A 0 ..^ B A 0 B A < B
9 simp1 A 0 B A < B A 0
10 9 2 sylib A 0 B A < B A 0
11 nnz B B
12 11 3ad2ant2 A 0 B A < B B
13 simp3 A 0 B A < B A < B
14 elfzo2 A 0 ..^ B A 0 B A < B
15 10 12 13 14 syl3anbrc A 0 B A < B A 0 ..^ B
16 8 15 impbii A 0 ..^ B A 0 B A < B