Metamath Proof Explorer


Theorem elfzo0l

Description: A member of a half-open range of nonnegative integers is either 0 or a member of the corresponding half-open range of positive integers. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfzo0l K 0 ..^ N K = 0 K 1 ..^ N

Proof

Step Hyp Ref Expression
1 elfzo0 K 0 ..^ N K 0 N K < N
2 1 simp2bi K 0 ..^ N N
3 fzo0sn0fzo1 N 0 ..^ N = 0 1 ..^ N
4 3 eleq2d N K 0 ..^ N K 0 1 ..^ N
5 elun K 0 1 ..^ N K 0 K 1 ..^ N
6 elsni K 0 K = 0
7 6 orim1i K 0 K 1 ..^ N K = 0 K 1 ..^ N
8 5 7 sylbi K 0 1 ..^ N K = 0 K 1 ..^ N
9 4 8 syl6bi N K 0 ..^ N K = 0 K 1 ..^ N
10 2 9 mpcom K 0 ..^ N K = 0 K 1 ..^ N