Metamath Proof Explorer


Theorem elfzo0z

Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion elfzo0z A 0 ..^ B A 0 B A < B

Proof

Step Hyp Ref Expression
1 elfzo0 A 0 ..^ B A 0 B A < B
2 nnz B B
3 2 3anim2i A 0 B A < B A 0 B A < B
4 simp1 A 0 B A < B A 0
5 elnn0z A 0 A 0 A
6 0red A B 0
7 zre A A
8 7 adantr A B A
9 zre B B
10 9 adantl A B B
11 lelttr 0 A B 0 A A < B 0 < B
12 6 8 10 11 syl3anc A B 0 A A < B 0 < B
13 elnnz B B 0 < B
14 13 simplbi2 B 0 < B B
15 14 adantl A B 0 < B B
16 12 15 syld A B 0 A A < B B
17 16 expd A B 0 A A < B B
18 17 impancom A 0 A B A < B B
19 5 18 sylbi A 0 B A < B B
20 19 3imp A 0 B A < B B
21 simp3 A 0 B A < B A < B
22 4 20 21 3jca A 0 B A < B A 0 B A < B
23 3 22 impbii A 0 B A < B A 0 B A < B
24 1 23 bitri A 0 ..^ B A 0 B A < B