Metamath Proof Explorer


Theorem elfzo1

Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Assertion elfzo1 N 1 ..^ M N M N < M

Proof

Step Hyp Ref Expression
1 fzossnn 1 ..^ M
2 1 sseli N 1 ..^ M N
3 elfzouz2 N 1 ..^ M M N
4 eluznn N M N M
5 2 3 4 syl2anc N 1 ..^ M M
6 elfzolt2 N 1 ..^ M N < M
7 2 5 6 3jca N 1 ..^ M N M N < M
8 nnuz = 1
9 8 eqimssi 1
10 9 sseli N N 1
11 nnz M M
12 id N < M N < M
13 10 11 12 3anim123i N M N < M N 1 M N < M
14 elfzo2 N 1 ..^ M N 1 M N < M
15 13 14 sylibr N M N < M N 1 ..^ M
16 7 15 impbii N 1 ..^ M N M N < M