Metamath Proof Explorer


Theorem elfzo1elm1fzo0

Description: Membership of a positive integer decremented by one in a half-open range of nonnegative integers. (Contributed by AV, 20-Mar-2021)

Ref Expression
Assertion elfzo1elm1fzo0 I 1 ..^ N I 1 0 ..^ N 1

Proof

Step Hyp Ref Expression
1 elfzoelz I 1 ..^ N I
2 elfzoel2 I 1 ..^ N N
3 1 2 jca I 1 ..^ N I N
4 elfzom1b I N I 1 ..^ N I 1 0 ..^ N 1
5 4 biimpd I N I 1 ..^ N I 1 0 ..^ N 1
6 3 5 mpcom I 1 ..^ N I 1 0 ..^ N 1