Metamath Proof Explorer


Theorem elfzo3

Description: Express membership in a half-open integer interval in terms of the "less than or equal to" and "less than" predicates on integers, resp. K e. ( ZZ>=M ) <-> M <_ K , K e. ( K ..^ N ) <-> K < N . (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzo3 K M ..^ N K M K K ..^ N

Proof

Step Hyp Ref Expression
1 3anass K M N K < N K M N K < N
2 elfzo2 K M ..^ N K M N K < N
3 eluzelz K M K
4 fzolb K K ..^ N K N K < N
5 3anass K N K < N K N K < N
6 4 5 bitri K K ..^ N K N K < N
7 6 baib K K K ..^ N N K < N
8 3 7 syl K M K K ..^ N N K < N
9 8 pm5.32i K M K K ..^ N K M N K < N
10 1 2 9 3bitr4i K M ..^ N K M K K ..^ N