Step |
Hyp |
Ref |
Expression |
1 |
|
elfz2nn0 |
|
2 |
|
elfz2nn0 |
|
3 |
|
elfzo0 |
|
4 |
|
nn0z |
|
5 |
|
nn0z |
|
6 |
|
znnsub |
|
7 |
4 5 6
|
syl2an |
|
8 |
|
simpr |
|
9 |
|
simpll |
|
10 |
|
nn0addcl |
|
11 |
8 9 10
|
syl2anr |
|
12 |
11
|
adantr |
|
13 |
|
0red |
|
14 |
|
nn0re |
|
15 |
14
|
adantr |
|
16 |
|
nn0re |
|
17 |
16
|
adantl |
|
18 |
13 15 17
|
3jca |
|
19 |
18
|
adantr |
|
20 |
|
nn0ge0 |
|
21 |
20
|
adantr |
|
22 |
21
|
anim1i |
|
23 |
|
lelttr |
|
24 |
19 22 23
|
sylc |
|
25 |
24
|
ex |
|
26 |
|
0red |
|
27 |
16
|
adantl |
|
28 |
|
nn0re |
|
29 |
28
|
adantr |
|
30 |
|
ltletr |
|
31 |
26 27 29 30
|
syl3anc |
|
32 |
|
nn0z |
|
33 |
|
elnnz |
|
34 |
33
|
simplbi2 |
|
35 |
32 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
31 36
|
syld |
|
38 |
37
|
exp4b |
|
39 |
38
|
com24 |
|
40 |
39
|
imp |
|
41 |
40
|
com13 |
|
42 |
41
|
adantl |
|
43 |
25 42
|
syld |
|
44 |
43
|
imp |
|
45 |
44
|
adantr |
|
46 |
45
|
imp |
|
47 |
|
nn0re |
|
48 |
47
|
adantl |
|
49 |
15
|
adantr |
|
50 |
|
readdcl |
|
51 |
48 49 50
|
syl2anr |
|
52 |
51
|
adantr |
|
53 |
17
|
adantr |
|
54 |
53
|
adantr |
|
55 |
54
|
adantr |
|
56 |
28
|
adantl |
|
57 |
52 55 56
|
3jca |
|
58 |
57
|
adantr |
|
59 |
47
|
adantl |
|
60 |
15
|
adantr |
|
61 |
17
|
adantr |
|
62 |
59 60 61
|
ltaddsubd |
|
63 |
62
|
exbiri |
|
64 |
63
|
impcomd |
|
65 |
64
|
adantr |
|
66 |
65
|
imp |
|
67 |
66
|
adantr |
|
68 |
67
|
anim1i |
|
69 |
|
ltletr |
|
70 |
58 68 69
|
sylc |
|
71 |
70
|
anasss |
|
72 |
|
elfzo0 |
|
73 |
12 46 71 72
|
syl3anbrc |
|
74 |
73
|
exp53 |
|
75 |
7 74
|
sylbird |
|
76 |
75
|
3adant3 |
|
77 |
76
|
com14 |
|
78 |
77
|
3imp |
|
79 |
3 78
|
sylbi |
|
80 |
79
|
com13 |
|
81 |
80
|
3adant1 |
|
82 |
2 81
|
sylbi |
|
83 |
82
|
com12 |
|
84 |
1 83
|
sylbi |
|
85 |
84
|
imp |
|