Database
REAL AND COMPLEX NUMBERS
Order sets
Half-open integer ranges
elfzoel1
Next ⟩
elfzoel2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elfzoel1
Description:
Reverse closure for half-open integer sets.
(Contributed by
Stefan O'Rear
, 14-Aug-2015)
Ref
Expression
Assertion
elfzoel1
⊢
A
∈
B
..^
C
→
B
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
ne0i
⊢
A
∈
B
..^
C
→
B
..^
C
≠
∅
2
fzof
⊢
..^
:
ℤ
×
ℤ
⟶
𝒫
ℤ
3
2
fdmi
⊢
dom
⁡
..^
=
ℤ
×
ℤ
4
3
ndmov
⊢
¬
B
∈
ℤ
∧
C
∈
ℤ
→
B
..^
C
=
∅
5
4
necon1ai
⊢
B
..^
C
≠
∅
→
B
∈
ℤ
∧
C
∈
ℤ
6
1
5
syl
⊢
A
∈
B
..^
C
→
B
∈
ℤ
∧
C
∈
ℤ
7
6
simpld
⊢
A
∈
B
..^
C
→
B
∈
ℤ