Metamath Proof Explorer


Theorem elfzoext

Description: Membership of an integer in an extended open range of integers. (Contributed by AV, 30-Apr-2020)

Ref Expression
Assertion elfzoext Z M ..^ N I 0 Z M ..^ N + I

Proof

Step Hyp Ref Expression
1 elfzoel2 Z M ..^ N N
2 zcn N N
3 nn0cn I 0 I
4 addcom N I N + I = I + N
5 2 3 4 syl2an N I 0 N + I = I + N
6 nn0pzuz I 0 N I + N N
7 6 ancoms N I 0 I + N N
8 5 7 eqeltrd N I 0 N + I N
9 fzoss2 N + I N M ..^ N M ..^ N + I
10 8 9 syl N I 0 M ..^ N M ..^ N + I
11 10 sselda N I 0 Z M ..^ N Z M ..^ N + I
12 11 expcom Z M ..^ N N I 0 Z M ..^ N + I
13 1 12 mpand Z M ..^ N I 0 Z M ..^ N + I
14 13 imp Z M ..^ N I 0 Z M ..^ N + I