Metamath Proof Explorer


Theorem elfzolem1

Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion elfzolem1 K M ..^ N K N 1

Proof

Step Hyp Ref Expression
1 id K M ..^ N K M ..^ N
2 elfzoel2 K M ..^ N N
3 simpl K M ..^ N N K M ..^ N
4 fzoval N M ..^ N = M N 1
5 4 adantl K M ..^ N N M ..^ N = M N 1
6 3 5 eleqtrd K M ..^ N N K M N 1
7 elfzle2 K M N 1 K N 1
8 6 7 syl K M ..^ N N K N 1
9 1 2 8 syl2anc K M ..^ N K N 1