Metamath Proof Explorer


Theorem elfzolt2

Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion elfzolt2 K M ..^ N K < N

Proof

Step Hyp Ref Expression
1 elfzoelz K M ..^ N K
2 elfzoel1 K M ..^ N M
3 elfzoel2 K M ..^ N N
4 elfzo K M N K M ..^ N M K K < N
5 1 2 3 4 syl3anc K M ..^ N K M ..^ N M K K < N
6 5 ibi K M ..^ N M K K < N
7 6 simprd K M ..^ N K < N