Metamath Proof Explorer


Theorem elfzolt2b

Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzolt2b K M ..^ N K K ..^ N

Proof

Step Hyp Ref Expression
1 elfzoelz K M ..^ N K
2 elfzoel2 K M ..^ N N
3 elfzolt2 K M ..^ N K < N
4 fzolb K K ..^ N K N K < N
5 1 2 3 4 syl3anbrc K M ..^ N K K ..^ N