Metamath Proof Explorer


Theorem elfzom1b

Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Assertion elfzom1b K N K 1 ..^ N K 1 0 ..^ N 1

Proof

Step Hyp Ref Expression
1 peano2zm N N 1
2 elfzm1b K N 1 K 1 N 1 K 1 0 N - 1 - 1
3 1 2 sylan2 K N K 1 N 1 K 1 0 N - 1 - 1
4 fzoval N 1 ..^ N = 1 N 1
5 4 adantl K N 1 ..^ N = 1 N 1
6 5 eleq2d K N K 1 ..^ N K 1 N 1
7 1 adantl K N N 1
8 fzoval N 1 0 ..^ N 1 = 0 N - 1 - 1
9 7 8 syl K N 0 ..^ N 1 = 0 N - 1 - 1
10 9 eleq2d K N K 1 0 ..^ N 1 K 1 0 N - 1 - 1
11 3 6 10 3bitr4d K N K 1 ..^ N K 1 0 ..^ N 1