Metamath Proof Explorer


Theorem elfzom1elp1fzo

Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Proof shortened by AV, 5-Jan-2020)

Ref Expression
Assertion elfzom1elp1fzo N I 0 ..^ N 1 I + 1 0 ..^ N

Proof

Step Hyp Ref Expression
1 elfzofz I 0 ..^ N 1 I 0 N 1
2 elfzuz2 I 0 N 1 N 1 0
3 elnn0uz N 1 0 N 1 0
4 zcn N N
5 4 anim1i N N 1 0 N N 1 0
6 elnnnn0 N N N 1 0
7 5 6 sylibr N N 1 0 N
8 7 expcom N 1 0 N N
9 3 8 sylbir N 1 0 N N
10 1 2 9 3syl I 0 ..^ N 1 N N
11 10 impcom N I 0 ..^ N 1 N
12 1nn0 1 0
13 12 a1i N 1 0
14 nnnn0 N N 0
15 nnge1 N 1 N
16 13 14 15 3jca N 1 0 N 0 1 N
17 11 16 syl N I 0 ..^ N 1 1 0 N 0 1 N
18 elfz2nn0 1 0 N 1 0 N 0 1 N
19 17 18 sylibr N I 0 ..^ N 1 1 0 N
20 fzossrbm1 N 0 ..^ N 1 0 ..^ N
21 20 adantr N I 0 ..^ N 1 0 ..^ N 1 0 ..^ N
22 fzossfz 0 ..^ N 0 N
23 21 22 sstrdi N I 0 ..^ N 1 0 ..^ N 1 0 N
24 simpr N I 0 ..^ N 1 I 0 ..^ N 1
25 23 24 jca N I 0 ..^ N 1 0 ..^ N 1 0 N I 0 ..^ N 1
26 ssel2 0 ..^ N 1 0 N I 0 ..^ N 1 I 0 N
27 elfzubelfz I 0 N N 0 N
28 25 26 27 3syl N I 0 ..^ N 1 N 0 N
29 19 28 jca N I 0 ..^ N 1 1 0 N N 0 N
30 elfzodifsumelfzo 1 0 N N 0 N I 0 ..^ N 1 I + 1 0 ..^ N
31 29 24 30 sylc N I 0 ..^ N 1 I + 1 0 ..^ N