Metamath Proof Explorer


Theorem elfzom1elp1fzo1

Description: Membership of a nonnegative integer incremented by one in a half-open range of positive integers. (Contributed by AV, 20-Mar-2021)

Ref Expression
Assertion elfzom1elp1fzo1 N I 0 ..^ N 1 I + 1 1 ..^ N

Proof

Step Hyp Ref Expression
1 elfzoelz I 0 ..^ N 1 I
2 1 zcnd I 0 ..^ N 1 I
3 pncan1 I I + 1 - 1 = I
4 2 3 syl I 0 ..^ N 1 I + 1 - 1 = I
5 id I 0 ..^ N 1 I 0 ..^ N 1
6 4 5 eqeltrd I 0 ..^ N 1 I + 1 - 1 0 ..^ N 1
7 6 adantl N I 0 ..^ N 1 I + 1 - 1 0 ..^ N 1
8 1 peano2zd I 0 ..^ N 1 I + 1
9 8 anim1i I 0 ..^ N 1 N I + 1 N
10 9 ancoms N I 0 ..^ N 1 I + 1 N
11 elfzom1b I + 1 N I + 1 1 ..^ N I + 1 - 1 0 ..^ N 1
12 10 11 syl N I 0 ..^ N 1 I + 1 1 ..^ N I + 1 - 1 0 ..^ N 1
13 7 12 mpbird N I 0 ..^ N 1 I + 1 1 ..^ N